SHRI RAMSWAROOP MEMORIAL UNIVERSITY End Semester Examination (2021-22)-Odd Semester

B.Sc.(IT) - I Year (I Sem)

Course Name:Basic Mathematics & Statistics	Code: BMA1007
Time: 02 Hours	Max Marks: 60

University Roll No.															
(To be filled by the Student)															

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

	ion A: Very Short Answer Type Questions mpt all the questions.	BL	CLO	Marks (10)
1.	Without determining the roots, comment on the nature of roots of the equation $x^{2} + 2x + 1 = 0$	BL2	CLO1	02
2.	Define symmetric and skew symmetric matrix.	BL1	CLO2	02
3.	Evaluate $\begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & -5 \\ 1 & 2 & 9 \end{vmatrix}$	BL5	CLO2	02
4.	Evaluate $\lim_{x \to 4} \frac{x^3 - 64}{x - 4}$	BL5	CLO3	02
5.	Define mean, median and mode.	BL2	CLO4	02
	ion B: Short Answer Type Questions mpt any 03out of 05 questions.	BL	CLO	Marks (30)
1.	If α and β are roots of the equation $2x^2 + 6x - 1 = 0$ then find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.	BL2	CLO1	10
2.	Discuss the continuity of function at x=0, if $f(x) = \begin{cases} 3x - 2, & x \le 0\\ x + 1, & x > 0 \end{cases}$	BL3	CLO2	10
3.	Differentiate $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ with respect to x.	BL5	CLO3	10
4.	Evaluate $\int \frac{\sec x}{(\sec x + \tan x)} dx$.	BL5	CLO3	10
5.	If a, b, c are positive and unequal, show that the value of the determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is negative.	BL4	CLO2	10

	ion C: Long Answer Type Questions/Case Study mpt any 01 out of 04 questions.	BL	CLO	Marks (20)
1.	Using matrices, solve the following system of equations:	BL5	CLO2	20
	x - y + z = 4; $x - 2y - 2z = 9;$ $2x + y + 3z = 1.$			
2.	Find the value of x, if $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$	BL4	CLO2	20
3.	Prove that $\int_0^{\pi/2} log(sinx) dx = -\frac{\pi}{2} (\log 2)$	BL5	CLO3	20
4.	Obtain first, second and third quartile for the data: 5, 6, 8, 9, 10,11, 15	BL3	CLO4	20
